A Multi-Site Stochastic Weather Generator for Improved Streamflow Forecast

Nina Caraway & Balaji Rajagopalan

University of Colorado, Boulder

Seasonal to Two-Year Colorado River Streamflow Prediction Workshop CBRFC, Salt Lake City

March 21, 2011

Multi-Model Ensemble Combination and Conditional Stochastic Weather Generation Tool for Improved Streamflow Forecasts

- National Oceanic and Atmospheric Administration (NOAA) funded project
- NOAA program element
 - Climate Prediction Program for the Americas (CPPA)
 - Hydrologic and water resources applications
- Principal Investigator: Balaji Rajagopalan
- Collaborators from Colorado Basin River Forecasting Center (CBRFC)
 - Dr. Kevin Werner
 - Dr. Michelle Schmidt

Outline

- Background
- Motivation
 - Current Ensemble Streamflow Prediction (ESP) method
 - Need for weather generator
- Stochastic Weather Generators
 - K-Nearest Neighbor re-sampling approach
- Application
- Results
- Future plans

Background

- Stress on water resources
 - Drought
 - Socio economic growth
- Need for efficient water resources management
 - Requires skillful streamflow predictions
 - ► For short term (weeks) time scales
 - And long term (seasonal to inter-annual)
 - Also incorporate seasonal climate forecasts based on large-scale climate forcings

Motivation

- ► CBRFC & Natural Resource Conservation Service (NRCS) work together to predict streamflows at two time scales
- ▶ At seasonal time scale, CBRFC uses the following models:
 - Statistical Water Supply (SWS), a regression based method that relates observed data with future streamflow
 - Ensemble Streamflow Prediction (ESP)
 - Based on historical daily weather sequence and a physically-based watershed model (such as the Sacremento Soil Moisture model, SAC-SMA)
- NRCS uses a principle components regression technique
- Forecasts from these models are qualitatively combined to issue a single 'coordinated' forecast for U.S. Bureau of Reclamation (USBR)

Motivation: ESP

- ▶ The ESP forecasts start at time 't', proceeding as follows:
 - ► Calibrated watershed model is run with historical data until time 't'
 - Thus obtaining the initial condition for the hydrologic state of the basin
 - Historical weather sequence for the period 't+1' through 't+k' (desired length of forecast) is used to force the hydrologic model
 - ▶ Which creates an ensemble of streamflow sequences
 - Where the number of ensembles is equal to number of historical years

Motivation: ESP

- Limited historical data means limited ensembles
- Incorporating seasonal forecasts further reduces the number of ensembles
 - For instance, forecasting based on warm ENSO phase
- Need arises for a simple and efficient approach to generate a 'rich variety' of streamflow ensembles
 - Will allow for robust estimation of probability density functions (PDFs)
- ▶ Hence bringing in stochastic weather generators

Stochastic Weather Generators

- Traditional weather generators are parametric
 - ► Generate ensembles of weather sequences
 - Employ Markov chain for precipitation occurences
 - ▶ PDFs (Gamma, Log-Normal, etc) for precipitation amounts
 - ► AR-1 for maximum and minimum temperatures (e.g., Richardson 1981)
- Extensions to multi-site were not trivial
- Extensions to 'conditional' generation (i.e., conditioned on seasonal climate forecasts) also proved difficult

Stochastic Weather Generators

- Nonparametric weather generators offer attractive alternative
 - Data-driven
 - Thus can 'capture' deviations from theoretical probability distributions
 - And also nonlinearities between variables
 - ► Can be based on kernel density estimators (Rajagopalan et al., 1996)
 - Or use resampling (Lall and Sharma, 1996; Rajagopalan and Lall, 1999)

K-Nearest Neighbor Weather Generator

- Semi-parametric weather generator (Apipattanavis et al., 2007)
 - First precipitation state is generated by a Markov chain fitted to the historical data (wet or dry)
 - ▶ Then precicipation time series is created using Markov chain
 - A K-Nearest Neighbor (KNN) method is applied to the time series, which can be expressed as simulating from the conditional PDF:

$$f(x_t \mid x_{t-1}, S_t, S_{t-1})$$

where x_t and x_{t-1} are the weather states and S_t and S_{t-1} are the precipitation state on day t and t-1

K-Nearest Neighbor Method

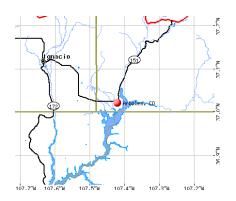
- Suppose January 1st is the simulated day of interest
- ► A 7-day (can be user defined) window is placed on January 1st (i.e. December 29th to January 4th)
 - This window around a given point is defined as a 'neighborhood'
- Calculates weighted Euclidean distance between weather variables of current day and neighbors
- Nearest neighbor receives a higher weight and the kth neighbor gets the least
- ▶ One of the historical days within the 7-day window is selected based on the previously calculated weights
- ► For example, a simulated January 1st could be January 3rd, 1985 from historical data

K-NN: A Physical Example

- Unconditional resampling
 - Drawing cards from a well-shuffled deck
 - Corresponds to selecting a (single or a set of) historical years from the record, with equal chance
- Conditional resampling
 - Drawing cards from a biased deck
 - Corresponds to selecting a (single or a set of) historical years with unequal chance

Application

Single Site Application



- Arboles, Colorado in San Juan Basin
- ► Three elevation zones available, lower was chosen
- ► Daily weather variables 1961-2004
 - Precipitation
 - Maximum temperature
 - Minimum temperature
- 50 simulations each 44 years long
- Statistics of simulated and historical data were compared

Multi Site Application

- ► The three stations (upper, middle, and lower) were spatially averaged to produce a 'synthetic' single site time series
 - Daily weather is generated at all locations simultaneously
 - Captures spatial dependency automatically
- ► Future modifications include elevation weighting or Principal Component Analysis (Yates et al., 2003)

Validation

- ► A suite of statistics were computed from the simulations and compared with historical observations
 - Displayed as boxplots
- Distributional Statistics
 - Mean
 - Standard Deviation
 - IQR
 - Skew
 - Probability density functions (PDFs)
- Threshold exceedances and extremes
 - Average number of wet and dry days
 - ► Total rainfall exceeding a threshold (e.g, 75th percentile)

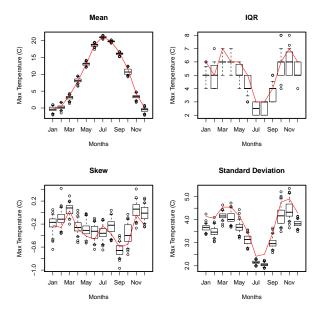


Figure: Single Site Max. Temperature

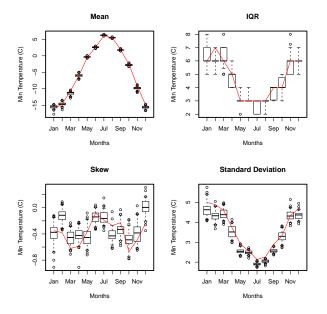


Figure: Single Site Min. Temperature

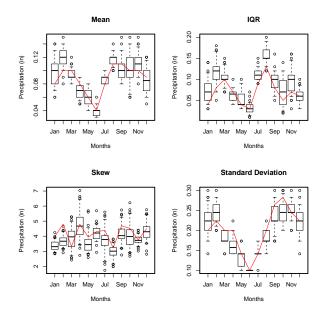


Figure: Single Site Precipitation

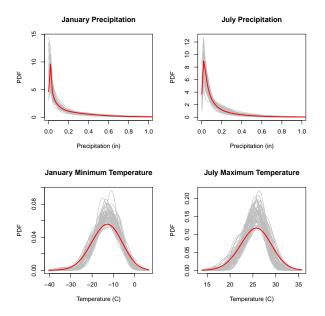


Figure: Single Site PDFs

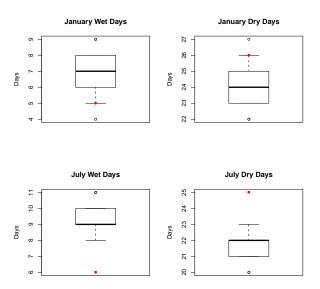


Figure: Average Wet and Dry Days in Selected Months

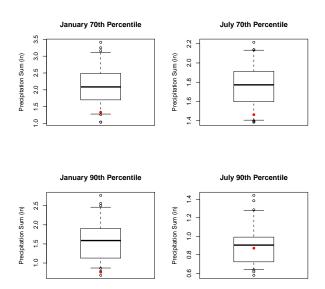


Figure: Precipitation Sums Above Thresholds

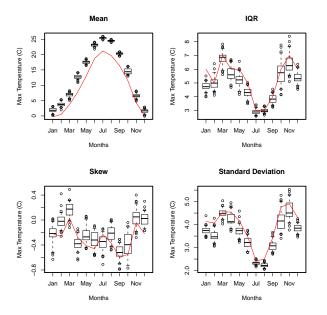


Figure: Single Site Max. Temperature from Averaged Multi Site

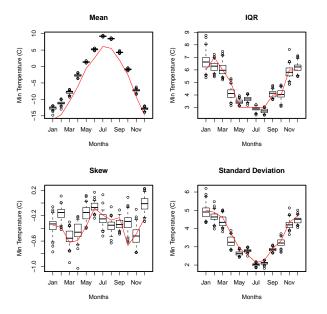


Figure: Single Site Min. Temperature from Averaged Multi Site

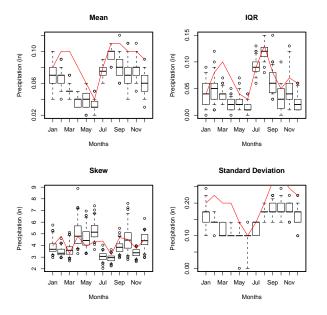


Figure: Single Site Precipitation from Averaged Multi Site

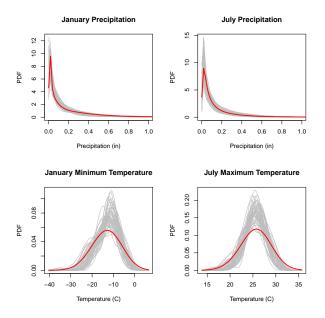
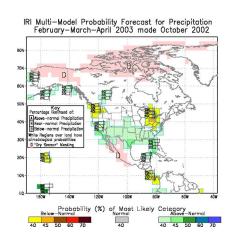


Figure: Single Site PDFs from Averaged Multi Site

Conditional Simulation



- Conditioned on International Research Institute (IRI) seasonal forecast
- So if prediction is A:N:B = 40:35:25
- Divide historical (seasonal) total into 3 tercile categories
- Bootstrap 40, 35, and 25 samples of historical years from wet, normal, and dry categories
- Then apply weather generator

Summary and Plans for Near-Term

- K-NN weather generator implemented and tested on small region in CO river basin
 - Historical statistics were well reproduced
- Further testing will include
 - Additional statistics, such as extreme precipitation, hot and cold spells, etc
 - Better weighting approaches to generate the 'synthetic' single site
- Also will perform testing on conditional simulation based on seasonal climate forecasts
- Then testing will be performed on other sites in Upper Colorado River Basin
- Ultimately, multi-site weather sequences will be driven through SAC-SMA
 - Performance of the streamflow ensembles will be evaluated
 - ► Has been done with Precipitation-Runoff Modeling System (PRMS) before (Apipattanavis et al., 2007)

How will USBR and CBRFC benefit?

- Project has 2 key things to develop
 - A conditional stochastic weather generator to provide daily weather ensembles based on NWS short term and NOAA seasonal outlooks
 - An optimal multi-model ensemble combination, which will provide a combined ensemble forecast from physical and statistical models
- Project will also build on a multi-model statistical streamflow forecast tool
 - ▶ Demonstrated on the Gunnison River Basin (Regona et al., 2006) and Upper Colorado River Basin (Bracken et al., 2010)
- ► These new and improved forecasts will be used for efficient operation and management of major reservoirs
 - Thus impacting water resources, agriculture, hydropower, and aquatic environments in the southwest and inter mountain regions of western U.S.

Questions?